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Some remarks on the characterization of  

Fibonacci and Lucas numbers 
 

 

Summary: We introduce a smart representation of Fibonacci and Lucas numbers and 

show how formulas about these sequences can be derived systematically. As an 

application we prove a characterization of Fibonacci and Lucas numbers by the roots of a 

2-dimensional 4-th order polynomial. Further we establish some generalizations of the 

Millin series.  

 

 

By Hieronymus Fischer 

 

1. Introduction 

For easy reference we first list the definitions used throughout this work. 

Definition 1-1 

Fibonacci numbers are denoted by nf . 

Lucas numbers are denoted by nl . 

According to the same index n we say ln is corresponding to fn (and vice versa). 

Definition 1-2 

The golden ratio  51
2
1   will be referenced by  . 

The natural logarithm of the golden ratio will be denoted by  ln . 

 

Looking to Binet’s formula for Fibonacci numbers, we have 

 

5

)(

)(

)(
1

nn

nn

nf





















. 

 

By definition of sine and cosine hyberbolic, it follows therefore 
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For the Lucas numbers we can easily deduce a very similar formula: 
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Regarding these relations, many formulas for Fibonacci and Lucas numbers easily follow from the 

rich treasury of appropriate sinh and cosh formulas.  
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For example, from the basic identity  
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we can derive  
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by setting the representations above and regarding the cases with odd and with even n. From this we 

get the well known fundamental identity 

 

 nnn fl 145
22

  

without any further calculations. 

 

Another example: the Moivre Theorem 
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results in a multiple angle formula 
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Especially for n=2 we obtain 
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from which follows both the identities 
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and 

mmm ffl 2 . 

 

In general, by binomial expansion we get  
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Hence we obtain 
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2. Characterization of Fibonacci and Lucas numbers by a 4-th order polynomial 

In this section we first characterize Fibonacci and Lucas numbers by square numbers. Based on this, 

we finally show that these numbers are the roots of a definite Diophantine polynomial. For the proof 

we make use of the representation introduced in section 1. 

Theorem 2-1 

Let P be a non-negative integer number. Then the following statements holds true 

(i) P is a Fibonacci number and there exists an even index n satisfying nfP    

if and only if the term 45 2 P is a square number. 

(ii) P is a Fibonacci number and there exists an odd index n satisfying nfP   

if and only if the term 45 2 P  is a square number. 

 

Proof: Let  be a Fibonacci number with an even index n. Then )sinh(
5

2
nP   and it follows  
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where the latter is the square of the n-th Lucas number. This is (i) “”. 

 

We come now to the opposite direction of (i). For P=0 the statement is trivially true, so we can restrict 

ourselves to P>0. Then, with  
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By definition y and  both are positive. We are ready if we can show that  is an integer and is even. In 

doing so, let n be the greatest even integer less than or equal to . Then  
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is a Fibonacci number. It follows 
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By choice of n it is 20  n  which results in 
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We realize that the right hand side of (2-1) has integer value because m and 45 2 m  are either even 

or odd simultaneously for all m  in discussion (where Pm    or  nfm  ). So we can conclude 

 

   0sinh   n  

From which follows v=n immediately. Therefore we have proved that, P is a Fibonacci number with 

the desired property according to statement (i). 

 

For the proof of (ii) we argue very similar. Let nfP   be a Fibonacci number with an odd index n. 
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where the latter is the square of the n-th Lucas number. This is (ii) “”. 

 

Now we treat the opposite direction of (ii). For P=1 the statement is trivially true, so we can restrict 
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By definition y and  both are positive. We are ready, if we can show, that  is an integer and is odd. 

In doing so, let n be the greatest odd integer less than or equal to . Then  
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is a Fibonacci number. It follows 
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By choice of n it is 20  n  which leads us to 
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The right hand side of (2-2) has an integer value, because m and 45 2 m  are either even or odd 

simultaneously for all m  (where Pm    or  nfm  ) in discussion. So we can conclude 
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which implies v=n. Therefore, we have proved that, P is a Fibonacci number with the desired property 

according to statement (ii).  

Corollary 2-1 

A non-negative integer P is a Fibonacci number if and only if 45 2 P  or 45 2 P  is a square number. 

Theorem 2-2 

Let P be a non-negative integer number. Then the following statements holds true 

(i) Q is a Lucas number and there exists an even index n satisfying nlQ    

if and only if the term  4
5

1 2 Q  is a square number. 

(ii) Q is a Lucas number and there exists an odd index n satisfying nlQ   

if and only if the term  4
5

1 2 Q  is a square number. 

 

Proof: Let nlQ   be a Lucas number with an even index n. Then )cosh(2 nP   and if follows 
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where the latter is the square of the n-th Fibonacci number. This is (i) “”.  

 

Of course, the opposite direction of (i) may be proved directly very similar to the proof of Theorem 

2-1 (i). For a shorter argumentation we make use of that Theorem and set  
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what shows, that Q is the n-th Lucas number. 

 

Assertion (ii) may be proved using a very similar argumentation.  

Corollary 2-2 

A non-negative integer Q is a Lucas number if and only if  4
5

1 2 Q  or  4
5

1 2 Q  is a square number. 

Theorem 2-3 

We define the following polynomial: 

 

(2-3) 161025:),( 4224  yyxxyxF  

 

For each pair of non-negative integer numbers ),( 00 yx  the following statements are equivalent 

(i) ),( 00 yx is a root of F (i.e. 0),( 00 yxF ). 

(ii) 0x  is a Fibonacci number and 0y  is the corresponding Lucas number.  
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Proof: As can be easily verified, we have 
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Let ),( 00 yx  be a root of F with non-negative integer numbers 0x  and 
0y , then by (2-4) we get 
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Obviously, by Corollary 2-1 and Corollary 2-2 this means, 0x  is a Fibonacci number and 
0y  is a 

Lucas number. Thus there exists an index n satisfying 0xf n  . Because of the fundamental identity 

22 45 nn lf   it follows immediately 0yln  . Hence 0x  and 0y  are proved to be corresponding 

Fibonacci and Lucas numbers. 

 

The opposite direction of the theorem plainly follows from the representation (2-4) of F.  

 

 

After Theorem 2-3 the non-negative integer roots of F plainly characterizes Fibonacci and Lucas 

numbers (more exact: pairs of corresponding Fibonacci and Lucas numbers). This means both, first, 

the x-part of each such root is a Fibonacci number whereas the y-part is a Lucas number, and, second, 

each pair ),( 00 yx  of corresponding Fibonacci and Lucas numbers is a root of F. 

 

3. Generalizations of the Millin series 

In this section we consider some generalizations of the Millin series in terms of the representation 
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In terms of the golden ratio the sum (3-1) can also be expressed by 
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Another compact form which is valid for odd p  as well as for even p  is given by 
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For some special parameters we get simpler formulas. If we set p=2q with an odd parameter q we find  
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Similar, for p=4q (q odd or even) we have  
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Both relations ((3-4) and (3-5)) can be easily deduced from (3-3) using Binet’s formula.  

 

To come to the proof of Theorem 3-1 we first consider the following lemma, which will be proved in 
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(3-9) 
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n=0 there, because it is
111

1

222

2

22

22 1







nnn

n

nn

nn

fff

f

ff

f
. 

A special case of interest is p=3. Then we get 
1111

1

3

3

33

33

33

32

33

33





 

n

n

nn

nn

nn

n

nn

nn

f

l

ff

lf

ff

f

ff

f
 and so the series (i) 

becomes to 1

0 3

3

1










n n

n

f

l
.  

An analogous statement holds true for the series (ii) which varies to 
5

1

0 3

3

1










n n

n

l

f
 for p=3. This 

follows immediately from 
1111

1

3

3

33

33

33

32

33

33





 

n

n

nn

nn

nn

n

nn

nn

l

f

ll

lf

ll

f

ll

f
. 

 

It is remarkable that for odd parameters p the series (i) always sums up to the reciprocal of the golden 

ratio 1 ,
 
independent from p. Similarly noteworthy: under the same circumstances the sum of the 

series (ii) always equals 
5

1
. 

 

The proof of Theorem 3-2 is based on the well known Fibonacci-Lucas subtraction formula  

 

(3-13) nm
n

nmnm ffllf  )1(2 . 

 

To show the power of the representation introduced in section 1 we will prove this formula here in 

terms of sine and cosine hyberbolic. Certainly, formula (3-13) follows easily from the theorems of 

addition and subtraction for sinh and cosh. The appropriate formulas are listed below for the sake of 

completeness. 

 

(3-14) 

(3-15) ))cosh(()sinh()sinh()cosh()cosh(

))sinh(()sinh()cosh()cosh()sinh(





nmnmnm

nmnmnm




 

 



… 
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Therefore, with respect to the sinh-cosh-representation we get 

 

(3-16) 

nmnmnm

nmnmnm

nmnmnm

nmnmnm

ffllf

ffllf

ffllf

ffllf

















2

5

2

5

2

1

2

1

2

5

2

5

2

5

2

1

2

1

2

5

2

5

2

5

2

1

2

1

2

5

2

5

2

5

2

1

2

1

2

5

 

 

for m, n even, by (3-14) 

 

for m, n odd, by (3-14) 

 

for m odd, n even, by (3-15) 

 

for m even, n odd, by (3-15) 

 

 

Dividing both sides of the relations (3-16) by 5  and multiplying by 2 results in formula (3-13) 

immediately. 

 

Proof of Theorem 3-2: Replacing m and n in formula (3-13) by p
n+1

 and p
n
 respectively gives 

 

(3-17) nn

n

nnnn pp

p

pppp
ffllf

  111 )1(2  

 

which implies 

 

(3-18) 























 

1

1

1

1

2

)1(

n

n

n

n

nn

nn

p

p

p

p
p

pp

pp

f

l

f

l

ff

f
, for n>0 

 

For the partial sum of the series (i) then we obtain 

 

(3-19) 




























































































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

2

)1(

2

)1(

N

N

N

N

N

N

n

n

n

n

nn

nn

p

pp

p
p

pp

pp

p

p

p

p

p

p
p

p

p

N

n p

p

p

p
p

p

p
N

n pp

pp

f

f
f

f

ff

f

f

f

f

l

f

l

f

f

f

l

f

l

f

f

ff

f

 

 

For N  the term 
1

1



 

N

N

p

pp

f

f

 tends to 
p , which implies 

 

(3-20)  p
p

pn pp

pp
f

fff

f

nn

nn















1

0

1

1

1

 

 

From this we get the equality with  
p

p
p

f


 


 )1(11  by replacing  pp

p fl 5
2

1
  for odd p 

and replacing  pp
pp fl 5

2

1
2     for even p. Thus, assertion (i) has been proved. 

The proof of the sum (ii) may be accomplished very analogue. From formula (3-17) now we get 

 



… 
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(3-21) 























 

1

1

1

1

2

)1(

n

n

n

n

nn

nn

p

p

p

p
p

pp

pp

l

f

l

f

ll

f
, for n>0 

 

Thus we obtain  

 

(3-22) 




























































































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

2

)1(

2

)1(

N

N

N

N

N

N

n

n

n

n

nn

nn

p

pp

p
p

pp

pp

p

p

p

p

p

p
p

p

p

N

n p

p

p

p
p

p

p
N

n pp

pp

l

f
f

l

ll

f

l

f

l

f

l

f

l

f

l

f

l

f

l

f

ll

f

 

 

for the partial sum of the series (ii). 

For N  the term 
1

1



 

N

N

p

pp

l

f
 tends to 

5

p
, and  therefore 

 

(3-23) 





























5

1
1

0 1

1 p

p
pn pp

pp
f

lll

f

nn

nn 
 

 

Similar to the argumentation above we get the equality with  
p

p
p

f5
)1(1

5

1 




 by replacing again 

 pp
p fl 5

2

1
  for odd p and replacing  pp

pp fl 5
2

1
2     for even p. This proves the 

assertion (ii) of Theorem 3-2.  

 

 

Without any reference to the golden ratio the sums (i) and (ii) of Theorem 3-2 can be expressed in 

perfect symmetry by 

 

(3-24) 

 







































odd   if,15
2

1

even   if,512
2

1

0 1

1

p

p
f

l

ff

f
p

p

n pp

pp

nn

nn

 

and 

(3-25) 






















































 odd   if,
5

1
1

2

1

even   if,21
5

1

2

1

0 1

1

p

p
l

f

ll

f
p

p

n pp

pp

nn

nn

 

 

Both relations yield from the formulas (i) and (ii) of Theorem 3-2 by replacing  pp
p fl 5

2

1
  for 

the case of even p. For odd p all is apparently true anyway.  


