Some remarks on the characterization of
Fibonacci and Lucas numbers

Summary: We introduce a smart representation of Fibonacci and Lucas numbers and
show how formulas about these sequences can be derived systematically. As an
application we prove a characterization of Fibonacci and Lucas numbers by the roots of a
2-dimensional 4-th order polynomial. Further we establish some generalizations of the
Millin series.

By Hieronymus Fischer

1. Introduction
For easy reference we first list the definitions used throughout this work.

Definition 1-1
Fibonacci numbers are denoted by f, .

Lucas numbers are denoted by | .
According to the same index n we say I, is corresponding to f, (and vice versa).

Definition 1-2
The golden ratio%(1+ \/3) will be referenced by ¢.
The natural logarithm of the golden ratio will be denoted by v =1Ing.

Looking to Binet’s formula for Fibonacci numbers, we have

-
b7
"~ (9)"
V5

n

By definition of sine and cosine hyberbolic, it follows therefore

%sinh(n://), if niseven
(1-1) f=1V2

n 2 e
—cosh(ny), ifnisodd

J5

For the Lucas numbers we can easily deduce a very similar formula:

2cosh(ny), if niseven
(1'2) n = - - -
2sinh(ny), if nisodd

Regarding these relations, many formulas for Fibonacci and Lucas numbers easily follow from the
rich treasury of appropriate sinh and cosh formulas.
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For example, from the basic identity

cosh? (x) —sinh?(x) =1

BRCARE

by setting the representations above and regarding the cases with odd and with even n. From this we
get the well known fundamental identity

we can derive

1,2 -5f,2=4.(-1)"
without any further calculations.

Another example: the Moivre Theorem
(cosh(x) +sinh(x))" = cosh(nx) + sinh(nx)

results in a multiple angle formula

Especially for n=2 we obtain
(10)2 +2v5 1, £y +5(f, )2 =215y + 245 Ty,
from which follows both the identities
12+5f2=2l,.
and
Ly fro = Forn -

In general, by binomial expansion we get

o510 =23 {1 o

i =

23 [P B Y, +1jsk<fm>2k+lnm>““.

Hence we obtain
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2. Characterization of Fibonacci and Lucas numbers by a 4-th order polynomial

In this section we first characterize Fibonacci and Lucas numbers by square numbers. Based on this,
we finally show that these numbers are the roots of a definite Diophantine polynomial. For the proof
we make use of the representation introduced in section 1.

Theorem 2-1

Let P be a non-negative integer number. Then the following statements holds true
Q) P is a Fibonacci number and there exists an even index n satisfying P = f,

if and only if the term 5P2 + 4 is a square number.
(i) P is a Fibonacci number and there exists an odd index n satisfying P = f,

if and only if the term5P% — 4 is a square number.

Proof: Let P = f_ be a Fibonacci number with an even index n. Then P = isinh(n w) and it follows

J5

5P% +4= 5(isinh(n y/)jz +4= 4(sinh2(n y/)+1)= (2cosh(ny))®

J5

where the latter is the square of the n-th Lucas number. This is (i) “=".

We come now to the opposite direction of (i). For P=0 the statement is trivially true, so we can restrict

ourselves to P>0. Then, with
y=ar sinh[? PJ

and
yod
174
we obtain
2 .
P =—sinh(vy ).
Zsinh(vy )

By definition y and v both are positive. We are ready if we can show that vis an integer and is even. In
doing so, let n be the greatest even integer less than or equal to v. Then

f,= %sinh(n ).

is a Fibonacci number. It follows

2 . 2 . 2 .

—sinh((v —n =——sinh cosh(ny )— —=sinh(ny )cosh

N (v=n)w) N (v )cosh(ny) N (ny)cosh(vy)
:P-%,/an2+4—fn%\/5P2+4

(2-1)

By choice of nitis 0<v—n<2 which results in

Og%sinh((v—n)y/k%sinh(zw): -t

5
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We realize that the right hand side of (2-1) has integer value because m and 5m? +4 are either even
or odd simultaneously for all m in discussion (where m=P or m= f,). So we can conclude

sinh(v—n)y)=0
From which follows v=n immediately. Therefore we have proved that, P is a Fibonacci number with
the desired property according to statement (i).

For the proof of (ii) we argue very similar. Let P = f_ be a Fibonacci number with an odd index n.

Then P:icosh(ny/) and it follows

J5

5P2 —4= 5{i cosh(n !//)] —4-= 4(cosh 2(n !//)—1): (2sinh(ny))®

V5

where the latter is the square of the n-th Lucas number. This is (ii) “=".

Now we treat the opposite direction of (ii). For P=1 the statement is trivially true, so we can restrict

ourselves to P>1. Then, with
y=ar cosh{g P]

V=

and

Y
v
we get

P= icosh(v://).

V5

By definition y and v both are positive. We are ready, if we can show, that vis an integer and is odd.
In doing so, let n be the greatest odd integer less than or equal to v. Then

f,= icosh(n w).

V5

is a Fibonacci number. It follows

%sinh((w -n)y)= sinh(vy/)% cosh(ny)—sinh(n y/)% cosh(vy)

(2-2)
:%\/SPZ —4-f, —%,/Sff —4.P
By choice of nitis 0<v—n<2 which leads us to

0«2 sinh((v—n)y)< Zsinh(zy)= & P _1.

V5 V5 V5

The right hand side of (2-2) has an integer value, because mand v5m? —4 are either even or odd
simultaneously for all m (where m=P or m= f,) in discussion. So we can conclude

sinh((v—n)y)=0
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which implies v=n. Therefore, we have proved that, P is a Fibonacci number with the desired property
according to statement (ii). (1

Corollary 2-1
A non-negative integer P is a Fibonacci number if and only if 5P? +4 or 5P? —4 is a square number.

Theorem 2-2

Let P be a non-negative integer number. Then the following statements holds true
Q) Q is a Lucas number and there exists an even index n satisfying Q =1,

if and only if the term %(QZ —4) is a square number.
(i) Q is a Lucas number and there exists an odd index n satisfying Q =1,

if and only if the term %(Q2 +4) is a square number.

Proof: Let Q =1, be a Lucas number with an even index n. Then P =2cosh(ny) and if follows

Q°-4
5

2
= %((2 cosh(ny))* — 4): %(cosh 2(ny) —1): (%sinh(n (//)j

where the latter is the square of the n-th Fibonacci number. This is (i) “=".

Of course, the opposite direction of (i) may be proved directly very similar to the proof of Theorem
2-1 (i). For a shorter argumentation we make use of that Theorem and set

Then, the term 5P2 + 4 is a square number, and so, by Theorem 2-1, P is equal to a Fibonacci number
f, with an even index n. Thus we can conclude

2
Q=v5P%+4= JS(%sinh(nw)J +4 =24Jsinh?(ny) +1 = 2cosh(ny)

what shows, that Q is the n-th Lucas number.

Assertion (ii) may be proved using a very similar argumentation. [

Corollary 2-2

A non-negative integer Q is a Lucas number if and only if %(Q2 + 4) or %(Q2 —4) iS a square number.

Theorem 2-3
We define the following polynomial:

(2-3) F(x,y)=25x* —10x?y? + y* —16

For each pair of non-negative integer numbers (X,, Y,) the following statements are equivalent
(M (Xg,Yg)isarootof F (i.e. F(xq,Y)=0).
(i) X, IS a Fibonacci number and vy, is the corresponding Lucas number.
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Proof: As can be easily verified, we have

F(x,Yy) = (y2 —5x2)2 -16
= 9 o500

Let (X,,Y,) be arootof F with non-negative integer numbers x, and y,, then by (2-4) we get

5x2 +4 = y2 or yi-4=5x{ respectively
or
5y 2 2 2 B2 ;
X§ —4=y§ or y;+4=5x; respectively

Obviously, by Corollary 2-1 and Corollary 2-2 this means, x, is a Fibonacci number and y, is a
Lucas number. Thus there exists an index n satisfying f,, = x,. Because of the fundamental identity

5f2 +4=12 it follows immediately I, = y,. Hence x, and y, are proved to be corresponding
Fibonacci and Lucas numbers.

The opposite direction of the theorem plainly follows from the representation (2-4) of F. [

After Theorem 2-3 the non-negative integer roots of F plainly characterizes Fibonacci and Lucas
numbers (more exact: pairs of corresponding Fibonacci and Lucas numbers). This means both, first,
the x-part of each such root is a Fibonacci number whereas the y-part is a Lucas number, and, second,
each pair (x,,y,) of corresponding Fibonacci and Lucas numbers is a root of F.

3. Generalizations of the Millin series

In this section we consider some generalizations of the Millin series in terms of the representation

introduced in section 1. The Millin seriesz fl

n=0 "2
integer multiples of 2" and will therefore prove the following result.

has sum %(7 - \/5). We extent the indices allowed to

Theorem 3-1
The generalized Millin series has sum

I, +2
%( pf —\/gj if p even
- 1 p
(3-1) Zf L1 (I +1)2+3
=0 e (21X T T 5| if p odd

In terms of the golden ratio the sum (3-1) can also be expressed by

1 1
_t
fo Ty
+I£¢_p'

¢", if p even

o 1

(3-2) 2 =114

n=0 ' p2" —_— if p odd
fp

p

DHF 6/11



Another compact form which is valid for odd p as well as for even p is given by

illﬁ

o R

n=0 fpz"
For some special parameters we get simpler formulas. If we set p=2q with an odd parameter q we find

-q
! :\/gl(p , godd

n=0 fq2n+1 q

(3-4)

Similar, for p=4q (g odd or even) we have

-2q

(35) >——-

n=0 2" f2q
Both relations ((3-4) and (3-5)) can be easily deduced from (3-3) using Binet’s formula.
To come to the proof of Theorem 3-1 we first consider the following lemma, which will be proved in

terms of hyberbolic functions. Especially, we are using a well known half angle formula for the
cotangens hyberbolic.

Lemma 3-1
n —X -2"x
(i) . 1k R , for xe 9, x=0.
='sinh(2“x)  sinh(x) sinh(2"x)
X -X
(i) . L —= ® | forxe 9%, x=.
='sinh(2“x)  sinh(x)
Proof: We have
coth(x)=W=coth(2x)+ . 1
sinh(2x) sinh(2x)
which implies
cosh(2 cosh 1
(3:6) (2) _ cosh(x)

sinh(2x)  sinh(x) sinh(2x)
and so, subtracting 1 on both sides, we get

cosh(2x) —sinh(2x) _ cosh(x) —sinh(x) 1

(3-7) sinh(2x) sinh(x) sinh(2x)
and finally

—X -2X
(3-8) 1 e e

sinh(2x) _ sinh(x) _ sinh(2x)

Thus we have
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n 1 B n efzk4x B e—zkx
“~sinh(2“x) 45| sinh(2“"x) sinh(2"x)
-2"x

(3-9)
_ I
sinh(x)  sinh(2"x)

which proves (i).
-2"x
Formula (ii) easily follows from (i) because the term % tends to zero for n — . [
sinh(2" x

Now we are able to prove Theorem 3-1: With respect to formula (1-1) we have for n>0

— 2 1 n
fp2n _Esmh(pa w), for n>0.
Thus we get
i 1 B 1
n=1 pr“ 2 n=1 Sinh(p'znl//)
-P
(3-10) 5 e
2 sinh(py)
5P
2 sinh(py)
and so
S LI
= o f, 2 sinh(py)
(3-11) i+£¢“’, p odd
1t b
i+i¢‘p, p even
fP fp

With respectto ¢7P = (-1)° %(Ip —Jgfp) we further obtain

f
1[i+5—p—\/§} p odd

21 2| f |
(3-12) Z = . Z-tl P
=0 "p2" |2 P _J5, p even
2( f,

2 2 2
2Ip+5fp _ 2Ip+5lp+4=(lp+l) +3. 0

f
where the term i+5—p may be replaced by
I folp folp fop

p p

The compact formula (3-3) follows from (3-11) by replacing the sinh

8/11
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EIR R S
f, 2 sinh(py) f

+ :
b $7P -1

Finally, we will prove two other statements which also concerns Fibonacci sums with power indices.

Theorem 3-2
For integer p>1 the following two statements holds true:

I oal

.. n=0 'p"t p" p
(i) o ( ) P

== +{l+ ()P )——

V5 1,5
For p=2 the series (i) is identical with the Millin series provided summation begins with n=1 instead of
P f n+l n f n
n=0 there, because it is—2——=2=— 2 - -
2n+1 f2n f2n+1 f2n f2n+1
- - - f3n+1 371 f23ﬂ f3n|3n I3n - -

A special case of interest is p=3. Then we get = - = = and so the series (i)

3n+l f3n f3n+1 f3n f3n+1 f3n f3n+1
LI
becomesto » =g,

n=0 3n+1

o0

fn -1 .
An analogous statement holds true for the series (ii) which varies to Z $ _?_ for p=3. This

n=0 I3n+1 \/g

. . f n+ n f n f nI n f n
follows immediately from —2°-8" 28" _ 3'3" _ 3

3n+l I3n I3n+l I3n |3n+1 I3n I3n+1

It is remarkable that for odd parameters p the series (i) always sums up to the reciprocal of the golden

ratio ¢, independent from p. Similarly noteworthy: under the same circumstances the sum of the
-1
series (ii) always equals ~—.

J5
The proof of Theorem 3-2 is based on the well known Fibonacci-Lucas subtraction formula
(3-13) foly =1 f,=2-(-)"f, .
To show the power of the representation introduced in section 1 we will prove this formula here in
terms of sine and cosine hyberbolic. Certainly, formula (3-13) follows easily from the theorems of
addition and subtraction for sinh and cosh. The appropriate formulas are listed below for the sake of

completeness.

(3-14) sinh(my ) cosh(ny) — cosh(my)sinh(ny) = sinh((m — n)y)
(3-15) cosh(m) cosh(ny) —sinh(my)sinh(ny) = cosh((m — n)y)
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Therefore, with respect to the sinh-cosh-representation we get

V51 L V5. 5,
5 m ST m '7 Y fm-n for m, n even, by (3-14)
ﬁ f 'iln —ll ﬂ f, = —ﬁ fn for m, n odd, by (3-14)
2 2 2™ 2 2

(3-16) 5 5. 5
75fm.1|n_l| .75fn:75fm_n for m odd, n even, by (3-15)
ﬁf 1 —il ﬁf __ﬁf for m even, n odd, by (3-15)
2 M2 2™ 2 " M

Dividing both sides of the relations (3-16) by /5 and multiplying by 2 results in formula (3-13)
immediately.

Proof of Theorem 3-2: Replacing m and n in formula (3-13) by p™** and p" respectively gives

— —2.(—""

(3'17) fpn+1|pn Ipn+1 fpn - 2 ( l) fpn+17pn
which implies

f Pl |

pn+1_pn (_1) p" pn+1 f

- S il L L _ P | forn>0

(3 18) f n+1f n 2 [ f n f n+1}

p p p p

For the partial sum of the series (i) then we obtain

I n+l

ZN: g Toa (D) ZN: el
f f 2 foo foa

n=0 'p p p n=1
f _ —_ p I I N+1
- fpl+( ;) {f_p_fp }
p p N+1
(3-19) P
_ f f N+1 -p
f f N+1f
f
1 pN+17p
p pN-¢-1
f p N+1 _ p
For N >« the term —— tends to gzﬁ’p,which implies
f p N +1
(3-20) Z f (fpflwf")
n=0 n+1 p

From this we get the equality with ¢~ +(1+( P ) . by replacing ¢~P =——(| —/5f )for odd p
p

and replacing ¢~ ? =2¢7° —%(Ip —\/Efp) for even p. Thus, assertion (i) has been proved.

The proof of the sum (ii) may be accomplished very analogue. From formula (3-17) now we get
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f il on _1\p f n f n+l
(3-21) £ P =&[—p—p—}f0rn>0
p

Thus we obtain

n=0 Ipn+1|pn Ip 2 n=1 p I n+l
_ flp_l N (_;)p (If_p_ :pNuJ
p p N+1
(3-22) P
_ fp—l f N+1_
o Ll

for the partial sum of the series (ii).

f N+1 p
For N — oo the term —>——" tendsto ©~—, and therefore

| vt J5
(3-23) o= =i[f +ﬁJ
S, 1L, B
Similar to the argumentation above we get the equality with % + (1+ (-D ”)\/(%_fpp by replacing again
p P = —%(Ip —\/gfp) for odd p and replacing ¢ P =2¢47° —%(Ip —\/Efp) for even p. This proves the

assertion (ii) of Theorem 3-2. [

Without any reference to the golden ratio the sums (i) and (ii) of Theorem 3-2 can be expressed in
perfect symmetry by

|
f o 1[2—”—1—\/5], if p even

(3-24) = AN
-0 f n+1f n 1 .
R E(\/g—l) if p odd
and
1( 1 fo .
o f —|—=+1-2—| if p even
29 S foew 20580,
= | nal 1 1 :
n=0 P —(1——} if p odd
2\ s

. . . .. . _ 1
Both relations yield from the formulas (i) and (ii) of Theorem 3-2 by replacing ¢ ° = E(I o —\/§fp) for

the case of even p. For odd p all is apparently true anyway.
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