Some remarks on the characterization of Fibonacci and Lucas numbers

Summary: We introduce a smart representation of Fibonacci and Lucas numbers and show how formulas about these sequences can be derived systematically. As an application we prove a characterization of Fibonacci and Lucas numbers by the roots of a 2-dimensional 4-th order polynomial. Further we establish some generalizations of the Millin series.

By Hieronymus Fischer

1. Introduction

For easy reference we first list the definitions used throughout this work.

Definition 1-1

Fibonacci numbers are denoted by f_{n}.
Lucas numbers are denoted by l_{n}.
According to the same index n we say l_{n} is corresponding to f_{n} (and vice versa).

Definition 1-2

The golden ratio $\frac{1}{2}(1+\sqrt{5})$ will be referenced by ϕ.
The natural logarithm of the golden ratio will be denoted by $\psi=\ln \phi$.

Looking to Binet's formula for Fibonacci numbers, we have

$$
\begin{aligned}
f_{n} & =\frac{\phi^{n}-(-\phi)^{-n}}{\phi-(-\phi)^{-1}} \\
& =\frac{\phi^{n}-(-\phi)^{-n}}{\sqrt{5}} .
\end{aligned}
$$

By definition of sine and cosine hyberbolic, it follows therefore

$$
f_{n}= \begin{cases}\frac{2}{\sqrt{5}} \sinh (n \psi), & \text { if } n \text { is even } \tag{1-1}\\ \frac{2}{\sqrt{5}} \cosh (n \psi), & \text { if } n \text { is odd }\end{cases}
$$

For the Lucas numbers we can easily deduce a very similar formula:

$$
l_{n}=\left\{\begin{array}{cc}
2 \cosh (n \psi), & \text { if } n \text { is even } \tag{1-2}\\
2 \sinh (n \psi), & \text { if } n \text { is odd }
\end{array}\right.
$$

Regarding these relations, many formulas for Fibonacci and Lucas numbers easily follow from the rich treasury of appropriate sinh and cosh formulas.

For example, from the basic identity

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

we can derive

$$
\left(\frac{l_{n}}{2}\right)^{2}-\left(\frac{\sqrt{5}}{2} f_{n}\right)^{2}=(-1)^{n}
$$

by setting the representations above and regarding the cases with odd and with even n. From this we get the well known fundamental identity

$$
l_{n}^{2}-5 f_{n}^{2}=4 \cdot(-1)^{n}
$$

without any further calculations.
Another example: the Moivre Theorem

$$
(\cosh (x)+\sinh (x))^{n}=\cosh (n x)+\sinh (n x)
$$

results in a multiple angle formula

$$
\left(\left(\frac{l_{m}}{2}\right)+\left(\frac{\sqrt{5}}{2} f_{m}\right)\right)^{n}=\left(\frac{l_{m n}}{2}\right)+\left(\frac{\sqrt{5}}{2} f_{m n}\right)
$$

Especially for $n=2$ we obtain

$$
\left(l_{m}\right)^{2}+2 \sqrt{5} l_{m} f_{m}+5\left(f_{m}\right)^{2}=2 l_{2 m}+2 \sqrt{5} f_{2 m}
$$

from which follows both the identities

$$
l_{m}^{2}+5 f_{m}^{2}=2 l_{2 m}
$$

and

$$
l_{m} f_{m}=f_{2 m}
$$

In general, by binomial expansion we get

$$
\begin{aligned}
\left(l_{m}+\sqrt{5} f_{m}\right)^{n} & =2^{n} \sum_{k=0}^{n}\binom{n}{k}\left(\sqrt{5} f_{m}\right)^{k}\left(l_{m}\right)^{n-k} \\
& =2^{n} \sum_{k=0}^{\left.\frac{n}{2}\right\rfloor}\binom{n}{2 k} 5^{k}\left(f_{m}\right)^{2 k}\left(l_{m}\right)^{n-2 k}+\sqrt{5} \sum_{k=0}^{\left.\frac{n-1}{2}\right\rfloor}\binom{n}{2 k+1} 5^{k}\left(f_{m}\right)^{2 k+1}\left(l_{m}\right)^{n-2 k-1}
\end{aligned} .
$$

Hence we obtain

$$
\begin{gathered}
l_{m n}=2^{n-1} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k} 5^{k}\left(f_{m}\right)^{2 k}\left(l_{m}\right)^{n-2 k} . \\
f_{m n}=2^{n-1} \sum_{k=0}^{\left.\frac{n-1}{2} \right\rvert\,}\binom{n}{2 k+1} 5^{k}\left(f_{m}\right)^{2 k+1}\left(l_{m}\right)^{n-2 k-1} .
\end{gathered}
$$

2. Characterization of Fibonacci and Lucas numbers by a 4-th order polynomial

In this section we first characterize Fibonacci and Lucas numbers by square numbers. Based on this, we finally show that these numbers are the roots of a definite Diophantine polynomial. For the proof we make use of the representation introduced in section 1 .

Theorem 2-1

Let P be a non-negative integer number. Then the following statements holds true
(i) $\quad P$ is a Fibonacci number and there exists an even index n satisfying $P=f_{n}$ if and only if the term $5 P^{2}+4$ is a square number.
(ii) $\quad P$ is a Fibonacci number and there exists an odd index n satisfying $P=f_{n}$ if and only if the term $5 P^{2}-4$ is a square number.

Proof: Let $P=f_{n}$ be a Fibonacci number with an even index n. Then $P=\frac{2}{\sqrt{5}} \sinh (n \psi)$ and it follows

$$
5 P^{2}+4=5\left(\frac{2}{\sqrt{5}} \sinh (n \psi)\right)^{2}+4=4\left(\sinh ^{2}(n \psi)+1\right)=(2 \cosh (n \psi))^{2}
$$

where the latter is the square of the n-th Lucas number. This is (i) " \Rightarrow ".
We come now to the opposite direction of (i). For $P=0$ the statement is trivially true, so we can restrict ourselves to $P>0$. Then, with

$$
y:=\operatorname{ar} \sinh \left(\frac{\sqrt{5}}{2} P\right)
$$

and

$$
v:=\frac{y}{\psi}
$$

we obtain

$$
P=\frac{2}{\sqrt{5}} \sinh (v \psi)
$$

By definition y and v both are positive. We are ready if we can show that v is an integer and is even. In doing so, let n be the greatest even integer less than or equal to v. Then

$$
f_{n}:=\frac{2}{\sqrt{5}} \sinh (n \psi)
$$

is a Fibonacci number. It follows

$$
\begin{align*}
\frac{2}{\sqrt{5}} \sinh ((v-n) \psi) & =\frac{2}{\sqrt{5}} \sinh (v \psi) \cosh (n \psi)-\frac{2}{\sqrt{5}} \sinh (n \psi) \cosh (v \psi) \tag{2-1}\\
& =P \cdot \frac{1}{2} \sqrt{5 f_{n}^{2}+4}-f_{n} \cdot \frac{1}{2} \sqrt{5 P^{2}+4}
\end{align*}
$$

By choice of n it is $0 \leq v-n<2$ which results in

$$
0 \leq \frac{2}{\sqrt{5}} \sinh ((v-n) \psi)<\frac{2}{\sqrt{5}} \sinh (2 \psi)=\frac{\phi^{2}-\phi^{-2}}{\sqrt{5}}=1 .
$$

We realize that the right hand side of (2-1) has integer value because m and $\sqrt{5 m^{2}+4}$ are either even or odd simultaneously for all m in discussion (where $m=P$ or $m=f_{n}$). So we can conclude

$$
\sinh ((v-n) \psi)=0
$$

From which follows $v=n$ immediately. Therefore we have proved that, P is a Fibonacci number with the desired property according to statement (i).

For the proof of (ii) we argue very similar. Let $P=f_{n}$ be a Fibonacci number with an odd index n.
Then $P=\frac{2}{\sqrt{5}} \cosh (n \psi)$ and it follows

$$
5 P^{2}-4=5\left(\frac{2}{\sqrt{5}} \cosh (n \psi)\right)^{2}-4=4\left(\cosh ^{2}(n \psi)-1\right)=(2 \sinh (n \psi))^{2}
$$

where the latter is the square of the n-th Lucas number. This is (ii) " \Rightarrow ".
Now we treat the opposite direction of (ii). For $P=1$ the statement is trivially true, so we can restrict ourselves to $P>1$. Then, with

$$
y:=\operatorname{arcosh}\left(\frac{\sqrt{5}}{2} P\right)
$$

and

$$
v:=\frac{y}{\psi}
$$

we get

$$
P=\frac{2}{\sqrt{5}} \cosh (\nu \psi) .
$$

By definition y and v both are positive. We are ready, if we can show, that v is an integer and is odd. In doing so, let n be the greatest odd integer less than or equal to v. Then

$$
f_{n}:=\frac{2}{\sqrt{5}} \cosh (n \psi) .
$$

is a Fibonacci number. It follows

$$
\begin{align*}
\frac{2}{\sqrt{5}} \sinh ((v-n) \psi) & =\sinh (v \psi) \frac{2}{\sqrt{5}} \cosh (n \psi)-\sinh (n \psi) \frac{2}{\sqrt{5}} \cosh (v \psi) \tag{2-2}\\
& =\frac{1}{2} \sqrt{5 P^{2}-4} \cdot f_{n}-\frac{1}{2} \sqrt{5 f_{n}^{2}-4} \cdot P
\end{align*}
$$

By choice of n it is $0 \leq v-n<2$ which leads us to

$$
0 \leq \frac{2}{\sqrt{5}} \sinh ((v-n) \psi)<\frac{2}{\sqrt{5}} \sinh (2 \psi)=\frac{\phi^{2}-\phi^{-2}}{\sqrt{5}}=1 .
$$

The right hand side of (2-2) has an integer value, because m and $\sqrt{5 m^{2}-4}$ are either even or odd simultaneously for all m (where $m=P$ or $m=f_{n}$) in discussion. So we can conclude

$$
\sinh ((v-n) \psi)=0
$$

which implies $v=n$. Therefore, we have proved that, P is a Fibonacci number with the desired property according to statement (ii).

Corollary 2-1

A non-negative integer P is a Fibonacci number if and only if $5 P^{2}+4$ or $5 P^{2}-4$ is a square number.

Theorem 2-2

Let P be a non-negative integer number. Then the following statements holds true
(i) $\quad Q$ is a Lucas number and there exists an even index n satisfying $Q=l_{n}$ if and only if the term $\frac{1}{5}\left(Q^{2}-4\right)$ is a square number.
(ii) $\quad Q$ is a Lucas number and there exists an odd index n satisfying $Q=l_{n}$ if and only if the term $\frac{1}{5}\left(Q^{2}+4\right)$ is a square number.

Proof: Let $Q=l_{n}$ be a Lucas number with an even index n. Then $P=2 \cosh (n \psi)$ and if follows

$$
\frac{Q^{2}-4}{5}=\frac{1}{5}\left((2 \cosh (n \psi))^{2}-4\right)=\frac{4}{5}\left(\cosh ^{2}(n \psi)-1\right)=\left(\frac{2}{\sqrt{5}} \sinh (n \psi)\right)^{2}
$$

where the latter is the square of the n-th Fibonacci number. This is (i) " \Rightarrow ".
Of course, the opposite direction of (i) may be proved directly very similar to the proof of Theorem 2-1 (i). For a shorter argumentation we make use of that Theorem and set

$$
P:=\sqrt{\frac{1}{5}\left(Q^{2}-4\right)}
$$

Then, the term $5 P^{2}+4$ is a square number, and so, by Theorem $2-1, P$ is equal to a Fibonacci number f_{n} with an even index n. Thus we can conclude

$$
Q=\sqrt{5 P^{2}+4}=\sqrt{5\left(\frac{2}{\sqrt{5}} \sinh (n \psi)\right)^{2}+4}=2 \sqrt{\sinh ^{2}(n \psi)+1}=2 \cosh (n \psi)
$$

what shows, that Q is the n-th Lucas number.
Assertion (ii) may be proved using a very similar argumentation.

Corollary 2-2

A non-negative integer Q is a Lucas number if and only if $\frac{1}{5}\left(Q^{2}+4\right)$ or $\frac{1}{5}\left(Q^{2}-4\right)$ is a square number.

Theorem 2-3

We define the following polynomial:

$$
\begin{equation*}
F(x, y):=25 x^{4}-10 x^{2} y^{2}+y^{4}-16 \tag{2-3}
\end{equation*}
$$

For each pair of non-negative integer numbers $\left(x_{0}, y_{0}\right)$ the following statements are equivalent
(i) $\quad\left(x_{0}, y_{0}\right)$ is a root of F (i.e. $\left.F\left(x_{0}, y_{0}\right)=0\right)$.
(ii) $\quad x_{0}$ is a Fibonacci number and y_{0} is the corresponding Lucas number.

Proof: As can be easily verified, we have

$$
\begin{align*}
F(x, y) & =\left(y^{2}-5 x^{2}\right)^{2}-16 \\
& =\left(\left(y^{2}-5 x^{2}\right)-4\right) \cdot\left(\left(y^{2}-5 x^{2}\right)+4\right) \tag{2-4}
\end{align*}
$$

Let $\left(x_{0}, y_{0}\right)$ be a root of F with non-negative integer numbers x_{0} and y_{0}, then by (2-4) we get

$$
5 x_{0}^{2}+4=y_{0}^{2} \quad \text { or } \quad y_{0}^{2}-4=5 x_{0}^{2} \quad \text { respectively }
$$

or

$$
5 x_{0}^{2}-4=y_{0}^{2} \quad \text { or } \quad y_{0}^{2}+4=5 x_{0}^{2} \quad \text { respectively }
$$

Obviously, by Corollary 2-1 and Corollary 2-2 this means, x_{0} is a Fibonacci number and y_{0} is a Lucas number. Thus there exists an index n satisfying $f_{n}=x_{0}$. Because of the fundamental identity $5 f_{n}^{2}+4=l_{n}^{2}$ it follows immediately $l_{n}=y_{0}$. Hence x_{0} and y_{0} are proved to be corresponding Fibonacci and Lucas numbers.

The opposite direction of the theorem plainly follows from the representation (2-4) of F.

After Theorem 2-3 the non-negative integer roots of F plainly characterizes Fibonacci and Lucas numbers (more exact: pairs of corresponding Fibonacci and Lucas numbers). This means both, first, the x-part of each such root is a Fibonacci number whereas the y-part is a Lucas number, and, second, each pair $\left(x_{0}, y_{0}\right)$ of corresponding Fibonacci and Lucas numbers is a root of F.

3. Generalizations of the Millin series

In this section we consider some generalizations of the Millin series in terms of the representation introduced in section 1. The Millin series $\sum_{n=0}^{\infty} \frac{1}{f_{2^{n}}}$ has sum $\frac{1}{2}(7-\sqrt{5})$. We extent the indices allowed to integer multiples of 2^{n} and will therefore prove the following result.

Theorem 3-1

The generalized Millin series has sum

$$
\sum_{n=0}^{\infty} \frac{1}{f_{p 2^{n}}}= \begin{cases}\frac{1}{2}\left(\frac{l_{p}+2}{f_{p}}-\sqrt{5}\right), & \text { if } p \text { even } \tag{3-1}\\ \frac{1}{2}\left(\frac{\left(l_{p}+1\right)^{2}+3}{f_{2 p}}-\sqrt{5}\right), & \text { if } p \text { odd }\end{cases}
$$

In terms of the golden ratio the sum (3-1) can also be expressed by

$$
\sum_{n=0}^{\infty} \frac{1}{f_{p 2^{n}}}= \begin{cases}\frac{1}{f_{p}}+\frac{1}{f_{p}} \phi^{-p}, & \text { if } p \text { even } \tag{3-2}\\ \frac{1}{f_{p}}+\frac{\sqrt{5}}{l_{p}} \phi^{-p}, & \text { if } p \text { odd }\end{cases}
$$

Another compact form which is valid for odd p as well as for even p is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{f_{p 2^{n}}}=\frac{1}{f_{p}}+\frac{\sqrt{5}}{\phi^{2 p}-1} \tag{3-3}
\end{equation*}
$$

For some special parameters we get simpler formulas. If we set $p=2 q$ with an odd parameter q we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{f_{q 2^{n+1}}}=\frac{\sqrt{5} \varphi^{-q}}{l_{q}}, \quad q \text { odd } \tag{3-4}
\end{equation*}
$$

Similar, for $p=4 q$ (q odd or even) we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{f_{q 2^{n+2}}}=\frac{\varphi^{-2 q}}{f_{2 q}} \tag{3-5}
\end{equation*}
$$

Both relations ((3-4) and (3-5)) can be easily deduced from (3-3) using Binet's formula.
To come to the proof of Theorem 3-1 we first consider the following lemma, which will be proved in terms of hyberbolic functions. Especially, we are using a well known half angle formula for the cotangens hyberbolic.

Lemma 3-1

(i)

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{\sinh \left(2^{k} x\right)}=\frac{e^{-x}}{\sinh (x)}-\frac{e^{-2^{n} x}}{\sinh \left(2^{n} x\right)}, \text { for } x \in \Re, x \neq 0 . \\
& \sum_{k=1}^{\infty} \frac{1}{\sinh \left(2^{k} x\right)}=\frac{e^{-x}}{\sinh (x)}, \text { for } x \in \Re, x \neq 0 .
\end{aligned}
$$

(ii)

Proof: We have

$$
\operatorname{coth}(x)=\frac{\cosh (2 x)+1}{\sinh (2 x)}=\operatorname{coth}(2 x)+\frac{1}{\sinh (2 x)}
$$

which implies

$$
\begin{equation*}
\frac{\cosh (2 x)}{\sinh (2 x)}=\frac{\cosh (x)}{\sinh (x)}-\frac{1}{\sinh (2 x)} \tag{3-6}
\end{equation*}
$$

and so, subtracting 1 on both sides, we get

$$
\begin{equation*}
\frac{\cosh (2 x)-\sinh (2 x)}{\sinh (2 x)}=\frac{\cosh (x)-\sinh (x)}{\sinh (x)}-\frac{1}{\sinh (2 x)} \tag{3-7}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\frac{1}{\sinh (2 x)}=\frac{e^{-x}}{\sinh (x)}-\frac{e^{-2 x}}{\sinh (2 x)} \tag{3-8}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
\sum_{k=1}^{n} \frac{1}{\sinh \left(2^{k} x\right)} & =\sum_{k=1}^{n}\left(\frac{e^{-2^{k-1} x}}{\sinh \left(2^{k-1} x\right)}-\frac{e^{-2^{k} x}}{\sinh \left(2^{k} x\right)}\right) \tag{3-9}\\
& =\frac{e^{-x}}{\sinh (x)}-\frac{e^{-2^{n} x}}{\sinh \left(2^{n} x\right)}
\end{align*}
$$

which proves (i).
Formula (ii) easily follows from (i) because the term $\frac{e^{-2^{n} x}}{\sinh \left(2^{n} x\right)}$ tends to zero for $n \rightarrow \infty$.
Now we are able to prove Theorem 3-1: With respect to formula (1-1) we have for $\mathrm{n}>0$

$$
f_{p 2^{n}}=\frac{2}{\sqrt{5}} \sinh \left(p \cdot 2^{n} \psi\right), \text { for } \mathrm{n}>0 .
$$

Thus we get

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{f_{p 2^{n}}} & =\frac{\sqrt{5}}{2} \sum_{n=1}^{\infty} \frac{1}{\sinh \left(p \cdot 2^{n} \psi\right)} \\
& =\frac{\sqrt{5}}{2} \frac{e^{-p \psi}}{\sinh (p \psi)} \tag{3-10}\\
& =\frac{\sqrt{5}}{2} \frac{\phi^{-p}}{\sinh (p \psi)}
\end{align*}
$$

and so

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{1}{f_{p 2^{n}}} & =\frac{1}{f_{p}}+\frac{\sqrt{5}}{2} \frac{\phi^{-p}}{\sinh (p \psi)} \\
& = \begin{cases}\frac{1}{f_{p}}+\frac{\sqrt{5}}{l_{p}} \phi^{-p}, & p \text { odd } \\
\frac{1}{f_{p}}+\frac{1}{f_{p}} \phi^{-p}, & p \text { even }\end{cases} \tag{3-11}
\end{align*}
$$

With respect to $\phi^{-p}=(-1)^{p} \frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ we further obtain

$$
\sum_{n=0}^{\infty} \frac{1}{f_{p 2^{n}}}= \begin{cases}\frac{1}{2}\left(\frac{2}{f_{p}}+5 \frac{f_{p}}{l_{p}}-\sqrt{5 \cdot}\right), & p \text { odd } \tag{3-12}\\ \frac{1}{2}\left(\frac{2+l_{p}}{f_{p}}-\sqrt{5}\right), & p \text { even }\end{cases}
$$

where the term $\frac{2}{f_{p}}+5 \frac{f_{p}}{l_{p}}$ may be replaced by $\frac{2 l_{p}+5 f_{p}^{2}}{f_{p} l_{p}}=\frac{2 l_{p}+5 l_{p}^{2}+4}{f_{p} l_{p}}=\frac{\left(l_{p}+1\right)^{2}+3}{f_{2 p}}$.

The compact formula (3-3) follows from (3-11) by replacing the sinh

$$
\frac{1}{f_{p}}+\frac{\sqrt{5}}{2} \frac{\phi^{-p}}{\sinh (p \psi)}=\frac{1}{f_{p}}+\frac{\sqrt{5}}{\phi^{2 p}-1} .
$$

Finally, we will prove two other statements which also concerns Fibonacci sums with power indices.

Theorem 3-2

For integer $p>1$ the following two statements holds true:
(i)

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{f_{p^{n+1}} f_{p^{n}}} & =\frac{1}{f_{p}}\left(f_{p-1}+\varphi^{-p}\right) \\
& =\varphi^{-1}+\left(1+(-1)^{p}\right) \frac{\varphi^{-p}}{f_{p}} \\
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{l_{p^{n+1} l_{p^{n}}}} & =\frac{1}{l_{p}}\left(f_{p-1}+\frac{\varphi^{-p}}{\sqrt{5}}\right)
\end{aligned}
$$

(ii)

$$
=\frac{\varphi^{-1}}{\sqrt{5}}+\left(1+(-1)^{p}\right) \frac{\varphi^{-p}}{l_{p} \sqrt{5}}
$$

For $p=2$ the series (i) is identical with the Millin series provided summation begins with $n=1$ instead of $n=0$ there, because it is $\frac{f_{2^{n+1}-2^{n}}}{f_{2^{n+1}} f_{2^{n}}}=\frac{f_{2^{n}}}{f_{2^{n+1}} f_{2^{n}}}=\frac{1}{f_{2^{n+1}}}$.
A special case of interest is $p=3$. Then we get $\frac{f_{3^{n+1}-3^{n}}}{f_{3^{n+1}} f_{3^{n}}}=\frac{f_{2 \cdot 3^{n}}}{f_{3^{n+1}} f_{3^{n}}}=\frac{f_{3^{n}} l_{3^{n}}}{f_{3^{n+1}} f_{3^{n}}}=\frac{l_{3^{n}}}{f_{3^{n+1}}}$ and so the series (i) becomes to $\sum_{n=0}^{\infty} \frac{l_{3^{n}}}{f_{3^{n+1}}}=\varphi^{-1}$.
An analogous statement holds true for the series (ii) which varies to $\sum_{n=0}^{\infty} \frac{f_{3^{n}}}{l_{3^{n+1}}}=\frac{\varphi^{-1}}{\sqrt{5}}$ for $p=3$. This follows immediately from $\frac{f_{3^{n+1}-3^{n}}}{l_{3^{n+1}} l_{3^{n}}}=\frac{f_{2 \cdot 3^{n}}}{l_{3^{n+1}} l_{3^{n}}}=\frac{f_{3^{n}} l_{3^{n}}}{l_{3^{n+1}} l_{3^{n}}}=\frac{f_{3^{n}}}{l_{3^{n+1}}}$.

It is remarkable that for odd parameters p the series (i) always sums up to the reciprocal of the golden ratio ϕ^{-1}, independent from p. Similarly noteworthy: under the same circumstances the sum of the series (ii) always equals $\frac{\phi^{-1}}{\sqrt{5}}$.

The proof of Theorem 3-2 is based on the well known Fibonacci-Lucas subtraction formula

$$
\begin{equation*}
f_{m} l_{n}-l_{m} f_{n}=2 \cdot(-1)^{n} f_{m-n} . \tag{3-13}
\end{equation*}
$$

To show the power of the representation introduced in section 1 we will prove this formula here in terms of sine and cosine hyberbolic. Certainly, formula (3-13) follows easily from the theorems of addition and subtraction for sinh and cosh. The appropriate formulas are listed below for the sake of completeness.

$$
\begin{align*}
& \sinh (m \psi) \cosh (n \psi)-\cosh (m \psi) \sinh (n \psi)=\sinh ((m-n) \psi) \tag{3-14}\\
& \cosh (m \psi) \cosh (n \psi)-\sinh (m \psi) \sinh (n \psi)=\cosh ((m-n) \psi) \tag{3-15}
\end{align*}
$$

Therefore, with respect to the sinh-cosh-representation we get

$$
\begin{array}{ll}
\frac{\sqrt{5}}{2} f_{m} \cdot \frac{1}{2} l_{n}-\frac{1}{2} l_{m} \cdot \frac{\sqrt{5}}{2} f_{n}=\frac{\sqrt{5}}{2} f_{m-n} & \text { for } \mathrm{m}, \mathrm{n} \text { even, by (3-14) } \\
\frac{\sqrt{5}}{2} f_{m} \cdot \frac{1}{2} l_{n}-\frac{1}{2} l_{m} \cdot \frac{\sqrt{5}}{2} f_{n}=-\frac{\sqrt{5}}{2} f_{m-n} & \text { for } \mathrm{m}, \mathrm{n} \text { odd, by (3-14) } \tag{3-16}\\
\frac{\sqrt{5}}{2} f_{m} \cdot \frac{1}{2} l_{n}-\frac{1}{2} l_{m} \cdot \frac{\sqrt{5}}{2} f_{n}=\frac{\sqrt{5}}{2} f_{m-n} & \text { for } \mathrm{m} \text { odd, } \mathrm{n} \text { even, by (3-15) } \\
\frac{\sqrt{5}}{2} f_{m} \cdot \frac{1}{2} l_{n}-\frac{1}{2} l_{m} \cdot \frac{\sqrt{5}}{2} f_{n}=-\frac{\sqrt{5}}{2} f_{m-n} & \text { for } \mathrm{m} \text { even, } \mathrm{n} \text { odd, by (3-15) }
\end{array}
$$

Dividing both sides of the relations (3-16) by $\sqrt{5}$ and multiplying by 2 results in formula (3-13) immediately.

Proof of Theorem 3-2: Replacing m and n in formula (3-13) by p^{n+l} and p^{n} respectively gives

$$
\begin{equation*}
f_{p^{n+1}} l_{p^{n}}-l_{p^{n+1}} f_{p^{n}}=2 \cdot(-1)^{p^{n}} f_{p^{n+1}-p^{n}} \tag{3-17}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{f_{p^{n+1}-p^{n}}}{f_{p^{n+1}} f_{p^{n}}}=\frac{(-1)^{p}}{2}\left(\frac{l_{p^{n}}}{f_{p^{n}}}-\frac{l_{p^{n+1}}}{f_{p^{n+1}}}\right) \text {, for } \mathrm{n}>0 \tag{3-18}
\end{equation*}
$$

For the partial sum of the series (i) then we obtain

$$
\begin{align*}
\sum_{n=0}^{N} \frac{f_{p^{n+1}-p^{n}}}{f_{p^{n+1}} f_{p^{n}}} & =\frac{f_{p-1}}{f_{p}}+\frac{(-1)^{p}}{2} \sum_{n=1}^{N}\left(\frac{l_{p^{n}}}{f_{p^{n}}}-\frac{l_{p^{n+1}}}{f_{p^{n+1}}}\right) \\
& =\frac{f_{p-1}}{f_{p}}+\frac{(-1)^{p}}{2}\left(\frac{l_{p}}{f_{p}}-\frac{l_{p^{N+1}}}{f_{p^{N+1}}}\right) \tag{3-19}\\
& =\frac{f_{p-1}}{f_{p}}+\frac{f_{p^{N+1}-p}}{f_{p^{N+1}} f_{p}} \\
& =\frac{1}{f_{p}}\left(f_{p-1}+\frac{f_{p^{N+1}-p}}{f_{p^{N+1}}}\right)
\end{align*}
$$

For $N \rightarrow \infty$ the term $\frac{f_{p^{N+1}-p}}{f_{p^{N+1}}}$ tends to ϕ^{-p}, which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{f_{p^{n+1}} f_{p^{n}}}=\frac{1}{f_{p}}\left(f_{p-1}+\varphi^{-p}\right) \tag{3-20}
\end{equation*}
$$

From this we get the equality with $\varphi^{-1}+\left(1+(-1)^{p}\right) \frac{\varphi^{-p}}{f_{p}}$ by replacing $\phi^{-p}=-\frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ for odd p and replacing $\phi^{-p}=2 \phi^{-p}-\frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ for even p. Thus, assertion (i) has been proved.
The proof of the sum (ii) may be accomplished very analogue. From formula (3-17) now we get

$$
\begin{equation*}
\frac{f_{p^{n+1}-p^{n}}}{l_{p^{n+1}} l_{p^{n}}}=\frac{(-1)^{p}}{2}\left(\frac{f_{p^{n}}}{l_{p^{n}}}-\frac{f_{p^{n+1}}}{l_{p^{n+1}}}\right) \text {, for } \mathrm{n}>0 \tag{3-21}
\end{equation*}
$$

Thus we obtain

$$
\begin{align*}
\sum_{n=0}^{N} \frac{f_{p^{n+1}-p^{n}}}{l_{p^{n+1}-p^{n}}} & =\frac{f_{p-1}}{l_{p}}+\frac{(-1)^{p}}{2} \sum_{n=1}^{N}\left(\frac{f_{p^{n}}}{l_{p^{n}}}-\frac{f_{p^{n+1}}}{l_{p^{n+1}}}\right) \\
& =\frac{f_{p-1}}{l_{p}}+\frac{(-1)^{p}}{2}\left(\frac{f_{p}}{l_{p}}-\frac{f_{p^{N+1}}}{l_{p^{N+1}}}\right) \tag{3-22}\\
& =\frac{f_{p-1}}{l_{p}}+\frac{f_{p^{N+1}-p}}{l_{p^{N+1}} l_{p}} \\
& =\frac{1}{l_{p}}\left(f_{p-1}+\frac{f_{p^{N+1}-p}}{l_{p^{N+1}}}\right)
\end{align*}
$$

for the partial sum of the series (ii).
For $N \rightarrow \infty$ the term $\frac{f_{p^{N+1}-p}}{l_{p^{N+1}}}$ tends to $\frac{\phi^{-p}}{\sqrt{5}}$, and therefore

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{l_{p^{n+1}} l_{p^{n}}}=\frac{1}{l_{p}}\left(f_{p-1}+\frac{\varphi^{-p}}{\sqrt{5}}\right) \tag{3-23}
\end{equation*}
$$

Similar to the argumentation above we get the equality with $\frac{\varphi^{-1}}{\sqrt{5}}+\left(1+(-1)^{p}\right) \frac{\varphi^{-p}}{\sqrt{5} f_{p}}$ by replacing again $\phi^{-p}=-\frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ for odd p and replacing $\phi^{-p}=2 \phi^{-p}-\frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ for even p. This proves the assertion (ii) of Theorem 3-2.

Without any reference to the golden ratio the sums (i) and (ii) of Theorem 3-2 can be expressed in perfect symmetry by

$$
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{f_{p^{n+1}} f_{p^{n}}}= \begin{cases}\frac{1}{2}\left(2 \frac{l_{p}}{f_{p}}-1-\sqrt{5}\right), & \text { if } p \text { even } \tag{3-24}\\ \frac{1}{2}(\sqrt{5}-1), & \text { if } p \text { odd }\end{cases}
$$

and

$$
\sum_{n=0}^{\infty} \frac{f_{p^{n+1}-p^{n}}}{l_{p^{n+1}-p^{n}}}= \begin{cases}\frac{1}{2}\left(\frac{1}{\sqrt{5}}+1-2 \frac{f_{p}}{l_{p}}\right), & \text { if } p \text { even } \tag{3-25}\\ \frac{1}{2}\left(1-\frac{1}{\sqrt{5}}\right), & \text { if } p \text { odd }\end{cases}
$$

Both relations yield from the formulas (i) and (ii) of Theorem 3-2 by replacing $\phi^{-p}=\frac{1}{2}\left(l_{p}-\sqrt{5} f_{p}\right)$ for the case of even p. For odd p all is apparently true anyway.

